
Runtime Analysis Tools 1
ID: 311-BSI | Version: 5 | Date: 11/14/08 4:49:02 PM

Runtime Analysis Tools
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005, 2008 Pearson Education, Inc.

2005-09-27; Updated 2008-10-06 L3 / D/P, L2

Runtime analysis tools that detect memory violations are helpful in eliminating memory-related defects that
can lead to heap-based vulnerabilities. To be effective, the tools must be used with a test suite that evaluates
failure modes as well as planned user scenarios.

Development Context
Dynamic memory management.

Technology Context
C, UNIX, Win32

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Standard C dynamic memory management functions such as malloc(), calloc(), and free() [ISO/
IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in
the heap, writing to already freed memory, and freeing the same memory multiple times (e.g. double-free
vulnerabilities).

Description
Runtime analysis tools that can detect memory violations are extremely helpful in eliminating memory-
related defects that can lead to heap-based vulnerabilities. To be effective, the tools must be used with a test
suite that evaluates failure modes as well as planned user scenarios.

Purify
Purify and PurifyPlus are runtime analysis tools from IBM (formerly Rational). Purify performs memory
corruption and memory leak detection functions and is available for both Windows and Linux platforms
[IBM 04]. It detects when a program reads or writes freed memory or frees nonheap or unallocated memory
and identifies writes beyond the bounds of an array.

Dmalloc Library
The debug memory allocation library (dmalloc) replaces the system’s malloc(), realloc(),
calloc(), free(), and other memory management functions to provide configurable, runtime debug
facilities. These facilities include memory-leak tracking, fence-post write detection, file/line number
reporting, and general logging of statistics [Watson 04].

The dmalloc library replaces the heap library calls normally found in system libraries with its own versions.
When you make a call to malloc(), for example, you are calling dmalloc’s version of the memory

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Runtime Analysis Tools 2
ID: 311-BSI | Version: 5 | Date: 11/14/08 4:49:02 PM

allocation function. When you allocate memory with these functions, the dmalloc library maintains debug
information about your pointer, including where it was allocated, how much memory was requested, and
when the call was made. This information can be verified when the pointer is freed or reallocated. The
dmalloc library makes sure the pointer has not been corrupted when you reallocate or free a memory address.

Electric Fence
Electric Fence can detect buffer overflows or unallocated memory references. Electric Fence implements
guard pages, using the virtual memory hardware of your computer to place an inaccessible memory page
immediately after (or before, as the user defines) each memory allocation. When software reads or writes
this inaccessible page, the hardware issues a segmentation fault, stopping the program at the offending
instruction and thus making it easy to find the erroneous statement with a debugger. In a similar manner,
memory that has been released by free() is made inaccessible, and any code that references it will cause a
segmentation fault.

Gnu Checker
Checker finds memory errors at runtime and warns you when the program reads an uninitialized variable or
memory area or accesses an unallocated memory area [FSF 04].

The malloc library of Checker is a robust but slower version of malloc. Checker issues warnings when
free() or realloc() is called with a pointer that does not reference a valid memory chunk, including
chunks that have already been freed. Checker’s malloc refrains from reusing a freed block immediately to
catch accesses to the block shortly after it has been freed.

Checker implements a garbage detector that can be called by your program as it runs or on exit. The garbage
detector displays all the memory leaks along with the functions that called malloc().

Valgrind
Valgrind allows you to profile and debug Linux/IA-32 executables [Valgrind 04]. The system consists of a
synthetic IA-32 CPU in software and a collection of debugging, profiling, and other tools. The architecture is
modular so that new tools can be created easily and without disturbing the existing structure.

Valgrind is closely tied to details of the CPU, operating system, and (to a lesser extent) the compiler and
basic C libraries. Valgrind is available on several Linux platforms and is licensed under the GNU General
Public License, version 2.

Insure++
Parasoft Insure++ is an automated runtime application testing tool that detects memory corruption, memory
leaks, memory allocation errors, variable initialization errors, variable definition conflicts, pointer errors,
library errors, I/O errors, and logic errors [Parasoft 04].

During compilation, Insure++ reads and analyzes the source code to insert tests and analysis functions
around each line. Insure++ builds a database of all program elements. In particular, Insure++ checks for the
following categories of dynamic memory issues:

• reading from or writing to freed memory

• passing dangling pointers as arguments to functions or returning them from functions

• freeing the same memory chunk multiple times

• attempting to free statically allocated memory

• freeing stack memory (local variables)

• passing a pointer to free() that doesn’t point to the beginning of a memory block

• calls to free with NULL or uninitialized pointers

• passing arguments of the wrong data type to malloc(), calloc(), realloc(), or free()

Runtime Analysis Tools 3
ID: 311-BSI | Version: 5 | Date: 11/14/08 4:49:02 PM

Application Verifier
Microsoft's Application Verifier helps you discover compatibility issues common to application code for
Windows platforms. The Page Heap utility (which used to be distributed with the Windows Application
Compatibility Toolkit) is incorporated into Application Verifier’s Detect Heap Corruptions test. It focuses on
corruptions versus leaks and finds almost any detectable heap-related bug.

One advantage of Application Verifier’s page heap test is that many errors can be detected as they occur. For
example, an off-by-one byte error at the end of a dynamically allocated buffer might cause an instant access
violation. For error categories that cannot be detected instantly, the error report is delayed until the block is
freed.

References

[ISO/IEC 99] ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01
Programming Languages — C. International
Organization for Standardization, 1999.

[IBM 04] IBM. Rational PurifyPlus. http://www-306.ibm.com/
software/awdtools/purifyplus (2004).

[Watson 04] Watson, Gray. Dmalloc — Debug Malloc Library.
http://dmalloc.com (2004).

[FSF 04] Free Software Foundation. Checker. http://
www.gnu.org/software/checker/checker.html (2004).

[Valgrind 04] Valgrind. Valgrind Latest News. http://
valgrind.kde.org (2004).

[Parasoft 04] Parasoft. Automating C/C++ Application Testing
with Parasoft Insure++ (Insure++ Technical
Papers). http://www.parasoft.com/jsp/smallbusiness/
tool_description.jsp?product=Insure (2004).

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

